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Figure 1: A close up view showing a digital circuit with thousands of neocortical neurons rendered with signed distance functions.

ABSTRACT

‘We explore a first proof-of-concept application for visualizing large
scale digitally reconstructed brain circuitry using signed distance
functions. The significance of our method is demonstrated in com-
parison with using implicit geometry that is limited to provide the nat-
ural look of neurons or explicit geometry that requires huge amounts
of memory and has limited scalability with larger circuits.

Index Terms: Signed distance function—Neuron—Ray-
marching—Visualization

1 INTRODUCTION

The recent years have witnessed a growing interest in applying visual
computing methods to neuroscience research making it possible to
accelerate our understanding of the brain, the most complicated
phenomenon in the known universe. Conventional in vivo and in
vitro experiments are not sufficient to unravel the complexity of the
brain. A little rat brain contains nearly a hundred billion neurons
and ten times more of glial cells.

The quantum leap in computing technologies was accompanied
with great potentials to use the digital revolution to understand the
brain [18]. Simulation-based neuroscience is introduced to comple-
ment traditional wet lab experiments, making it possible to perform
computer simulations relying on digital models to test competing
hypotheses about the brain [19]. Markram ef al. have presented a
first draft digital circuit reconstructed from the somatosensory cortex
of a young rat [20, 25] allowing to perform a series of biological
experiments in a computer simulation or in silico. The scale of
the experiments is so huge that it is extremely challenging to build
convenient tools to visualize and analyze the resulting outcomes
of the simulations. Tens of Terabytes of simulations, hundreds of
thousands of neuronal morphologies, millions of synapses and other
kinds of large scale data that must be visualized to accomplish the
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mission. In this context, we present a high fidelity visualization
method that is capable of rendering those circuits using signed dis-
tance functions.

1.1 Background & Related Work

Various techniques have been used to visualize three-dimensional
digital circuits of neurons starting from individual cells and up to
complex circuits with several thousand or even hundreds of thou-
sands of neurons. The most notable application, that has been used
to visualize simulated electrical activity RTNeuron [15], is based
on rasterization. It is implemented on top of OpenSceneGraph [21].
It can use implicit geometry (cones, spheres and cylinders) or even
polygonal surface meshes created a priori with domain specific
meshing libraries [16, 6, 4] . RTNeuron has added support to paral-
lel rendering of relatively dense circuits using Equalizer [9, 8, 14].
Nevertheless, this scalability has certain limits owing to using raster-
ization in addition to relying on highly tessellated polygonal meshes.

Garcia et al. have developed a convenient method to generate
adaptive meshes from morphological skeletons on-the-fly using tes-
sellation shaders [11]. Their approach is convenient for visualizing
larger circuits, but the scale of the circuit is also limited to the mem-
ory size of the GPU. Moreover, reducing the tessellation factor to
visualize more neurons would significantly reduce the visual quality
of the scene.

Other approaches have used volume rendering to visualize even
larger circuits to simulate in silico imaging experiments [3, 2]. Unfor-
tunately, this approach involves three expensive steps: 1) generating
piecewise watertight mesh models per neuron, 2) voxelizing the
membrane of each neuron using surface voxelization and 3) filling
the intracellular space of the neurons using solid voxelization to
ultimately reconstruct a single volume model that represents the
entire neuronal circuit. Depending on the complexity and density
of the circuit, this offline process might take several hours to create
a huge volume with decent resolution at which we can recognize
individual arbors of very thin and long axons.

Our approach uses signed distance functions (SDF) to visualize
the circuits, enabling us to overcome the technical limitations of
all previous techniques. In contrary to using explicit geometric
representations (or polygonal surface meshes) where complexity



scales with memory consumption, SDF trades memory usage with
a little overhead in computational complexity by evaluating a set
of simple functions to render neurons. In our context, this is a
desirable trade-off as we are dealing with a huge number of neurons
to visualize.

1.2 Signed Distance Functions

A signed distance function (or signed distance field for its discrete
form) is a mathematical function that returns the shortest distance
between a given point and an implicit surface [23]. Therefore, the
zero-level set of that function can be used to represent the underly-
ing implicit surface. Such representations are very attractive since
the level-of-detail of that surface will only depend on the complex-
ity of the mathematical function. For this reason, SDF has many
applications in various domains.

Fuhrmann et al. leverage the simplicity of collision detection
with SDF to improve the performance of physically-based cloth
simulation [10]. In computer vision, SDF have long been used for
accurate 3D reconstructions from RGB-D data, which can be used in
robotics for both mapping and planning [22]. B&rentzen uses SDF
in volumetric solids manipulation and sculpting [5].

Another use of signed distance fields is found in GPU-based font
rendering, where precomputed multi-channel distance fields from
vector shapes can be used in real-time to efficiently reproduce the
symbol shapes [12].

In the context of fractal rendering, Hart et al. introduced a render-
ing algorithm similar to ray-tracing called ray-marching [13]. As
no close-formula could be found for computing the ray intersection
with the implicit fractal surface, this method uses the SDF represen-
tation to step along the camera rays until it reaches the surface to
find the intersection location.

Quilez established many of the now common distance field effects
in the demo scene domain [1] . Later, modern game engines started
to use SDF and ray-marching to approximate rendering effects such
as soft shadows and ambient occlusion as presented in [26].

2 OUR APPROACH

As described above, the SDF is a function which given a geometric
point returns a signed distance to a surface. The sign is determined
by whether the point is inside or outside of the surface. In this paper,
we let a negative sign represent that the point is inside the surface.
Algorithm 1 is a simple example of an SDF representing a sphere
with a specific center and radius.

Algorithm 1 Sphere SDF

p = position to evaluate

¢ = sphere center

r = sphere radius

procedure SPHERESDF(p,c,r)
return length(p —c) —r

Figure 2: A conceptual diagram illustrating the ray-marching algo-
rithm.

Algorithm 2 Cone pill SDF

p = position to evaluate
pp = base position

rp = base radius

p: = tip position

1y = tip radius

procedure CONEPILLSDF(p, pp, 1y, pr, 1)

V=Dt —Pb
w=p-—pp
di=w-v > Distance to pj, along pill axis

if d; < 0 then return sphereSDF(p, py, 1)

dy = [v]|

if dy < d; then return sphereSDF(p, p;, ;)

t=d/dy > Closest t-value along pill axis
Pp=pptt-v > Closest point on pill axis
ty = 6b° — 156* +10x3 > Sigmoid-shape adjusted t-value
rp = lerp(rp,r1,ts) > Linear interpolated radius
return sphereSDF(p, pp, )

The core algorithm we present uses a ray-tracing technique called
ray-marching, see Figure 2. In ray-marching, the whole scene or
some parts of it is defined in terms of one or several signed distance
functions. Finding the intersection between the launched ray and the
scene is done by evaluating the SDF at certain points along the ray.
At each point the distance to the surface is given and we use this dis-
tance to step closer. By iteratively evaluating the SDF and stepping
closer we can conclude within some error margin if a ray is inter-
secting the geometry or not. The main benefit of using ray-marching
is that you can describe complex shapes using only mathematical
functions. Compared to meshing, the same shape using SDF can be
rendered with equivalent quality and lower memory usage. Another
benefit is that it provides an infinite resolution since evaluating the
SDF with high enough precision is always an option.

One important property of SDF is that since they are just mathe-
matical functions, combining them into another function is trivial.
Using this fact, we can combine two SDF using some formulas to
make it appear as the two geometries are blended together. This is a
very important technique used throughout this paper which we will
refer to as blending, see Figure 3.
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Figure 3: A comparison between rendering two spheres using ray-
marching without (a) and with blending (b).

Today we use two different techniques to visualize morphologies.
The first one uses implicit geometries with a sphere for the soma
and cones and spheres for the segments of the arbors. The other
technique uses meshes reconstructed from these implicit geometries,
see Figure 4. The meshed version will look more realistic but uses
much more memory.

To render the morphology using ray-marching, we use sphere and
cone pill primitives represented as SDF functions as described by
Algorithms 1 and 2. The cone pill is a pill with different radii at the
base and tip. It also provides a variant with a sigmoid function-like
shape for the radius, as shown in Figure 5.
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Figure 4: A zoom-in of a neuron soma rendered using implicit
geometry(a), SDF (b) and a triangle mesh (c).

(a) Sphere

(b) Cone pill with sigmoid shape

Figure 5: The two types of primitives used, sphere and cone pill.
The cone pill is the sigmoid function variant.

With these shapes we can visualize a good approximation of the
morphology. If two primitives are to be evaluated and blended
together using the blending function, we call these primitives
neighbours. To improve performance and only blend connected
geometries, a global buffer of the primitives’ neighbours is kept.

For each primitive, two parameters are stored: 1) an index into
the global buffer and 2) the number of neighbours this primitive has.
If the primitive is not to be blended then it has no index into the
buffer.

When evaluating a primitive, all the neighbouring primitives’
functions are also evaluated and blended together as described by
Algorithms 3 and 4.

Algorithm 3 Intersection algorithm

p = intersected primitive
b =intersected bounding box
r=ray

procedure INTERSECT(p, r,b)
r, = origin of r
rq = direction or r
to = t-value entry point of intersection between b and r
1) = t-value exit point of intersection between b and r
=1t
for i < 0 to MAXSAMPLES do
d = blendedDistance(p,ro +ry *t)
if d < gort >t then
break
t=t+d;
if t > ¢; then return —1
return ¢

The soma is modeled using several cone pills connected with one
end at the soma center and the other at the first segment of the arbors.
The pill has two different radii, the base matches the average radius
of the soma and the radius of the tip is set to the radius of the first
segment of the connecting arbor. A sigmoid function is used for the
radius evaluation to give it a more organic or realistic look, refer to
Figure 4.

The arbors, including axons, apical and basal dendrites are rep-
resented as regular cone pills without any blending to maintain

Algorithm 4 Primitive blended distance algorithm

prim = primitive

p = position to evaluate

f = blend factor

distance() = primitive specific geometric distance function
blend() = blending function

procedure BLENDED DISTANCE(prim, p)

d = distance(prim,p);

N = number of neighbours to prim

fori < Oto N do
prim; = primitive with neighbour index i
d; = distance(prim;, p)
d = blend(d,d;, f)

return d

performance. However, the primitives part of the bifurcations of the
arbors are blended together to make the branching more natural. By
only blending at the soma and the bifurcations, we can reduce the
needed computations significantly for efficient rendering.

3 RESULTS & DiscussION

Our algorithm was implemented in Brayns [7] using the OSPRay
engine [27]. We visualized multiple digital circuits reconstructed
based on the ecosystem presented by Markram et al [20].

The performance was benchmarked on a cluster node using a-
dual socket CPU with Intel Xeon Gold 6140 CPUs running at 2.30
GHz. We loaded a single neocortical column with 0.1%, 1.0% and
10.0% of the total geometry (~31,000 neurons with thousands of
samples per neuron) using SDF, meshes and implicit geometry one
at a time. To see the average performance, we rendered two views:
a close-up view and a global view where the entire circuit can be
seen. Moreover, two techniques have been used to render the scene:
basic ray-tracing and physically-based path tracing with one sample
per pixel. We believe that this combination is mandatory to assess
an average performance. The comparative results are illustrated in
Figure 6 including the size of each scene and the rendering time per
frame.

3.1 Memory

In terms of memory requirements, implicit geometry always have the
lowest overhead. Using explicit geometry requires at least five folds
of memory to render the same scene. Meanwhile, SDF has slightly
higher, yet comparable, memory requirements to implicit geometry.
Nevertheless, it has a comparable visual quality to using the meshes
as shown in Figure 7. These numbers will vary depending on the
resolution of the mesh and the specific neuron but it gives a good
approximation of what to expect for each geometry type.

3.2 Performance

As shown in Figure 6, implicit geometry has the best performance
in all scenes. For global views (looking from far away distance),
the performance of SDF becomes comparable to implicit geometry.
However, it gets worse the more we render closer frames. This is
likely due to the fact that the SDF geometries in the soma are more
expensive to render and when they cover a bigger area of the view
the performance will degrade.

We also see that at the 1% and 10% scenes the SDF starts to
perform better than the meshes. This is where the overhead of
using meshes starts to become a problem, likely due to the higher
memory usage causing slow-downs in the BVH traversal. At this
scale, using SDF becomes the only viable option for more realistic
renderings owing to memory and performance issues with using
meshes. With this we see that SDF fills an important gap and can
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Figure 6: The performance and scene size of a single neocortical column using 0.1%, 1.0% and 10.0% of the whole data set for implicit,
SDF and mesh geometry. The performance is measured using the average rendering time for a 1920x1080 frame. Near means the scene was
rendered close-up and Far means it was rendered from a far. RT and PT means that the images are rendered with ray-tracing and path-tracing

respectively.
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Figure 7: Rendering digital neocortical circuits with different cell densities. From the left, a circuit containing tens of neurons (and a close up
on one neuron), hundreds of neurons (and a close up on a group of layer V pyramidal neurons), and a relatively large circuit containing tens of
thousands of neurons. The scenes used for benchmarking (to the left) are rendered with implicit geometry (top), SDF (middle) and explicit
geometry (bottom). The image on the right shows a collection of neurons color coded by their morphological types.

be considered as the best option for large scale realistic rendering of
neural morphologies.

4 CONCLUSION & FUTURE WORK

Visualization of large scale neuronal circuits is essential for
simulation-based neuroscience. It gives us the opportunity to ana-
lyze various structural and functional aspects of the outcomes of in
silico experiments. We presented a novel approach that uses signed
distance functions to render neuronal morphologies from their dig-
ital reconstructions taking into account several factors, including
memory consumption, performance and visual quality. The signifi-
cance of our approach is demonstrated with a comparison to using
implicit geometric models, which have less memory requirements
but reduced visual quality and explicit models that have huge mem-
ory requirements. Relying on this technique we were able to render
extremely large scale circuits (a sampled isocortex with 200,000 neu-
rons on a single compute with 720 Gigabyte) which were unfeasible
to visualize before with the same visual quality.

We are currently working on several extensions to further improve

the visual appearance of the neurons and the rendering performance.
The surface of the neurons is being improved by applying a random
noise function to the SDF evaluation giving it a more textured and
organic look.

We are also investigating the possibility to adapt streamlines
rendering [17] to create high quality branching based on bézier
curves with differing radii along the curve which will give perfectly
smooth arbors and branching. This would allow us to synthesize high
quality connected arbors with lower memory requirements. Another
idea is to slightly shorten the individual segments of the arbors at
each end and apply blending functions between the preceding and
following segments to make the arbors smoother. We can extend
the rendering to also include synapses, which are mushroom-like
objects connecting to the arbors. These could easily be modeled
using SDF and blended with the connecting segments of the arbors.

In terms of performance, we are implementing our algorithm on
the GPU using Nvidia’s rendering engine, OptiX [24].
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